Temperature sensitivity of organic carbon mineralization in contrasting lake sediments

نویسندگان

  • Cristian Gudasz
  • Sebastian Sobek
  • David Bastviken
  • Birgit Koehler
  • Lars J. Tranvik
چکیده

Temperature alone explains a great amount of variation in sediment organic carbon (OC) mineralization. Studies on decomposition of soil OC suggest that (1) temperature sensitivity differs between the fast and slowly decomposition OC and (2) over time, decreasing soil respiration is coupled with increase in temperature sensitivity. In lakes, autochthonous and allochthonous OC sources are generally regarded as fast and slowly decomposing OC, respectively. Lake sediments with different contributions of allochthonous and autochthonous components, however, showed similar temperature sensitivity in short-term incubation experiments. Whether the mineralization of OC in lake sediments dominated by allochthonous or autochthonous OC has different temperature sensitivity in the longer term has not been addressed. We incubated sediments from two boreal lakes that had contrasting OC origin (allochthonous versus autochthonous), and OC characteristics (C/N ratios of 21 and 10) at 1, 3, 5, 8, 13, and 21°C for five months. Compared to soil and litter mineralization, sediment OCmineralization rates were low in spite of low apparent activation energy (Ea). The fraction of the total OC pool that was lost during five months varied between 0.4 and 14.8%. We estimate that the sediment OC pool not becoming long-term preserved was degraded with average apparent turnover times between 3 and 32 years. While OC mineralization was strongly dependent on temperature as well as on OC composition and origin, temperature sensitivity was similar across lakes and over time. We suggest that the temperature sensitivity of OC mineralization in lake sediments is similar across systems within the relevant seasonal scales of OC supply and degradation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of sediments in the carbon cycle of boreal lakes

Chmiel, H. E. 2015. The role of sediments in the carbon cycle of boreal lakes. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1279. 42 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9318-9. Inland waters are active sites of carbon (C) processing and emitters of carbon dioxide (CO2) and methane (CH4) to the atmosphere. In the bor...

متن کامل

Do models of organic carbon mineralization extrapolate to warmer tropical sediments?

Freshwater sediments are important sites of organic carbon (OC) burial and mineralization. Previous studies indicate that warming can increase rates of OC mineralization, implying more CO2 release from sediments and, consequently, less OC burial, but temperatures typical of tropical ecosystems are poorly represented in the models of temperature and OC mineralization. We measured OC mineralizati...

متن کامل

Temperature-driven decoupling of key phases of organic matter degradation in marine sediments.

The long-term burial of organic carbon in sediments results in the net accumulation of oxygen in the atmosphere, thereby mediating the redox state of the Earth's biosphere and atmosphere. Sediment microbial activity plays a major role in determining whether particulate organic carbon is recycled or buried. A diverse consortium of microorganisms that hydrolyze, ferment, and terminally oxidize or...

متن کامل

Characterization of legacy organic carbon in a culturally eutrophic lake : the role of the historic carbon deposition in the time course and extent of lake recovery

Characterization of legacy organic carbon in a culturally eutrophic lake : the role of the historic carbon deposition in the time course and extent of lake recovery ", Master's Thesis, Abstract The time course of lake recovery after a reduction in external loading of nutrients is often controlled by conditions in the sediment. Remediation of eutrophication is hindered by the presence of legacy ...

متن کامل

Temperature induced decoupling of enzymatic hydrolysis and carbon remineralization in long-term incubations of Arctic and temperate sediments

Extracellular enzymatic hydrolysis of high-molecular weight organic matter is the initial step in sedimentary organic carbon degradation and is often regarded as the rate-limiting step. Temperature effects on enzyme activities may therefore exert an indirect control on carbon mineralization. We explored the temperature sensitivity of enzymatic hydrolysis and its connection to subsequent steps i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015